Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cells ; 10(11)2021 11 07.
Article in English | MEDLINE | ID: covidwho-1512135

ABSTRACT

The bronchial vascular endothelial network plays important roles in pulmonary pathology during respiratory viral infections, including respiratory syncytial virus (RSV), influenza A(H1N1) and importantly SARS-Cov-2. All of these infections can be severe and even lethal in patients with underlying risk factors.A major obstacle in disease prevention is the lack of appropriate efficacious vaccine(s) due to continuous changes in the encoding capacity of the viral genome, exuberant responsiveness of the host immune system and lack of effective antiviral drugs. Current management of these severe respiratory viral infections is limited to supportive clinical care. The primary cause of morbidity and mortality is respiratory failure, partially due to endothelial pulmonary complications, including edema. The latter is induced by the loss of alveolar epithelium integrity and by pathological changes in the endothelial vascular network that regulates blood flow, blood fluidity, exchange of fluids, electrolytes, various macromolecules and responses to signals triggered by oxygenation, and controls trafficking of leukocyte immune cells. This overview outlines the latest understanding of the implications of pulmonary vascular endothelium involvement in respiratory distress syndrome secondary to viral infections. In addition, the roles of infection-induced cytokines, growth factors, and epigenetic reprogramming in endothelial permeability, as well as emerging treatment options to decrease disease burden, are discussed.


Subject(s)
Endothelial Cells/pathology , Oxidative Stress , Respiratory Distress Syndrome/pathology , Virus Diseases/pathology , Epigenesis, Genetic , Humans , Influenza A Virus, H1N1 Subtype/physiology , Pulmonary Edema/genetics , Pulmonary Edema/pathology , Pulmonary Edema/virology , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/virology , Respiratory Syncytial Viruses/pathogenicity , SARS-CoV-2/pathogenicity , Virus Diseases/genetics , Virus Diseases/virology
2.
Nat Struct Mol Biol ; 28(9): 755-761, 2021 09.
Article in English | MEDLINE | ID: covidwho-1406396

ABSTRACT

Bradykinin and kallidin are endogenous kinin peptide hormones that belong to the kallikrein-kinin system and are essential to the regulation of blood pressure, inflammation, coagulation and pain control. Des-Arg10-kallidin, the carboxy-terminal des-Arg metabolite of kallidin, and bradykinin selectively activate two G protein-coupled receptors, type 1 and type 2 bradykinin receptors (B1R and B2R), respectively. The hyperactivation of bradykinin receptors, termed 'bradykinin storm', is associated with pulmonary edema in COVID-19 patients, suggesting that bradykinin receptors are important targets for COVID-19 intervention. Here we report two G protein-coupled complex structures of human B1R and B2R bound to des-Arg10-kallidin and bradykinin, respectively. Combined with functional analysis, our structures reveal the mechanism of ligand selectivity and specific activation of the bradykinin receptor. These findings also provide a framework for guiding drug design targeting bradykinin receptors for the treatment of inflammation, cardiovascular disorders and COVID-19.


Subject(s)
Bradykinin/metabolism , COVID-19/pathology , Kallidin/metabolism , Receptors, Bradykinin/metabolism , Cryoelectron Microscopy , Enzyme Activation/physiology , Humans , Protein Structure, Tertiary , Pulmonary Edema/pathology , Pulmonary Edema/virology , SARS-CoV-2
3.
SLAS Discov ; 26(9): 1079-1090, 2021 10.
Article in English | MEDLINE | ID: covidwho-1314244

ABSTRACT

The recent renascence of phenotypic drug discovery (PDD) is catalyzed by its ability to identify first-in-class drugs and deliver results when the exact molecular mechanism is partially obscure. Acute respiratory distress syndrome (ARDS) is a severe, life-threatening condition with a high mortality rate that has increased in frequency due to the COVID-19 pandemic. Despite decades of laboratory and clinical study, no efficient pharmacological therapy for ARDS has been found. An increase in endothelial permeability is the primary event in ARDS onset, causing the development of pulmonary edema that leads to respiratory failure. Currently, the detailed molecular mechanisms regulating endothelial permeability are poorly understood. Therefore, the use of the PDD approach in the search for efficient ARDS treatment can be more productive than classic target-based drug discovery (TDD), but its use requires a new cell-based assay compatible with high-throughput (HTS) and high-content (HCS) screening. Here we report the development of a new plate-based image cytometry method to measure endothelial barrier function. The incorporation of image cytometry in combination with digital image analysis substantially decreases assay variability and increases the signal window. This new method simultaneously allows for rapid measurement of cell monolayer permeability and cytological analysis. The time-course of permeability increase in human pulmonary artery endothelial cells (HPAECs) in response to the thrombin and tumor necrosis factor α treatment correlates with previously published data obtained by transendothelial resistance (TER) measurements. Furthermore, the proposed image cytometry method can be easily adapted for HTS/HCS applications.


Subject(s)
COVID-19/diagnostic imaging , High-Throughput Screening Assays/methods , Image Cytometry/methods , Respiratory Distress Syndrome/diagnostic imaging , COVID-19/diagnosis , COVID-19/virology , Cell Membrane Permeability/genetics , Drug Discovery , Endothelial Cells/ultrastructure , Endothelial Cells/virology , Humans , Image Processing, Computer-Assisted , Pandemics/prevention & control , Phenotype , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/pathology , Pulmonary Artery/virology , Pulmonary Edema/diagnosis , Pulmonary Edema/diagnostic imaging , Pulmonary Edema/virology , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/virology , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/virology , SARS-CoV-2/pathogenicity , Thrombin/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
4.
Sci Rep ; 11(1): 11524, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1253988

ABSTRACT

Nearly 5% of patients suffering from COVID-19 develop acute respiratory distress syndrome (ARDS). Extravascular lung water index (EVLWI) is a marker of pulmonary oedema which is associated with mortality in ARDS. In this study, we evaluate whether EVLWI is higher in patients with COVID-19 associated ARDS as compared to COVID-19 negative, ventilated patients with ARDS and whether EVLWI has the potential to monitor disease progression. EVLWI and cardiac function were monitored by transpulmonary thermodilution in 25 patients with COVID-19 ARDS subsequent to intubation and compared to a control group of 49 non-COVID-19 ARDS patients. At intubation, EVLWI was noticeably elevated and significantly higher in COVID-19 patients than in the control group (17 (11-38) vs. 11 (6-26) mL/kg; p < 0.001). High pulmonary vascular permeability index values (2.9 (1.0-5.2) versus 1.9 (1.0-5.2); p = 0.003) suggested a non-cardiogenic pulmonary oedema. By contrast, the cardiac parameters SVI, GEF and GEDVI were comparable in both cohorts. High EVLWI values were associated with viral persistence, prolonged intensive care treatment and in-hospital mortality (23.2 ± 6.7% vs. 30.3 ± 6.0%, p = 0.025). Also, EVLWI showed a significant between-subjects (r = - 0.60; p = 0.001) and within-subjects correlation (r = - 0.27; p = 0.028) to Horowitz index. Compared to non COVID-19 ARDS, COVID-19 results in markedly elevated EVLWI-values in patients with ARDS. High EVLWI reflects a non-cardiogenic pulmonary oedema in COVID-19 ARDS and could serve as parameter to monitor ARDS progression on ICU.


Subject(s)
COVID-19/complications , Extravascular Lung Water/immunology , Pulmonary Edema/mortality , Respiratory Distress Syndrome/mortality , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/immunology , COVID-19/mortality , Capillary Permeability , Disease Progression , Extravascular Lung Water/virology , Female , Hospital Mortality , Humans , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Lung/blood supply , Lung/physiopathology , Male , Middle Aged , Monitoring, Physiologic/methods , Monitoring, Physiologic/statistics & numerical data , Prognosis , Pulmonary Edema/diagnosis , Pulmonary Edema/immunology , Pulmonary Edema/virology , Respiration, Artificial , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Risk Assessment/methods , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thermodilution/methods , Thermodilution/statistics & numerical data , Young Adult
5.
Nephrol Ther ; 17(4): 226-232, 2021 Aug.
Article in French | MEDLINE | ID: covidwho-1074879

ABSTRACT

BACKGROUND: The effect of COVID-19 pandemic on end stage renal disease patient who should initiated dialysis are limited in Sub-Saharan Africa is unknown. We sought to describe the epidemiologic and clinical profile of newly admitted patient in chronic haemodialysis during the COVID-19 pandemic in Cameroon and evaluate their survival between 90days of dialysis initiation. MATERIAL AND METHOD: We conducted a cohort study of 6months from April to October 2020. End stage renal disease patients newly admitted in the haemodialysis facility of the General Hospital of Douala were included. Patients with confirmed or suspected COVID-19 were identified. Socio-demographic, clinical and biological data at dialysis initiation as well as mortality between the 90days of dialysis initiation were registered. RESULTS: A total of 57 incident patients were recorded from April to October 2020 with a monthly mean of 9.5 patients. The mean age was 46.95±13.12years. Twenty-four COVID-19 were identified with a frequency of 49% among emergency admission. Pulmonary œdema (79.2% vs. 42.4%; P=0.006) and uremic encephalopathy (83.4% vs. 53.6%; P=0.022) were more common in COVID-19. The overall survival at 90days was 48% with a tendency to poor survival among COVID-19 and patients with low socioeconomic level. In Cox regression, low socioeconomic level increase the risk of instant death by 3.08. CONCLUSION: SARS-CoV2 seem to increase nephrology emergency and poor survival in haemodialysis at 90days.


Subject(s)
COVID-19/mortality , Hospitalization , Kidney Failure, Chronic/mortality , Renal Dialysis , Brain Diseases/epidemiology , Brain Diseases/etiology , Cameroon/epidemiology , Female , Hospitals, General , Humans , Incidence , Kidney Failure, Chronic/therapy , Male , Middle Aged , Pandemics , Prospective Studies , Pulmonary Edema/epidemiology , Pulmonary Edema/virology , Social Class , Uremia/epidemiology , Uremia/virology
7.
Vascul Pharmacol ; 137: 106829, 2021 04.
Article in English | MEDLINE | ID: covidwho-1014876

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is an important player of the renin-angiotensin-aldosterone system (RAAS) in regulating the conversion of angiotensin II into angiotensin (1-7). While expressed on the surface of human cells, such as lung, heart, kidney, neurons, and endothelial cells (EC), ACE2 is the entry receptor for SARS-CoV-2. Here, we would like to highlight that ACE2 is predominant on the EC membrane. Many of coronavirus disease 2019 (COVID-19) symptoms have been associated with the large recruitment of immune cells, directly affecting EC. Additionally, cytokines, hypoxia, and complement activation can trigger the activation of EC leading to the coagulation cascade. The EC dysfunction plus the inflammation due to SARS-CoV-2 infection may lead to abnormal coagulation, actively participating in thrombo-inflammatory processes resulting in vasculopathy and indicating poor prognosis in patients with COVID-19. Considering the intrinsic relationship between EC and the pathophysiology of SARS-CoV-2, EC-associated therapies such as anticoagulants, fibrinolytic drugs, immunomodulators, and molecular therapies have been proposed. In this review, we will discuss the role of EC in the lung inflammation and edema, in the disseminate coagulation process, ACE2 positive cancer patients, and current and future EC-associated therapies to treat COVID-19.


Subject(s)
COVID-19/virology , Cardiovascular Diseases/virology , Endothelium, Vascular/virology , Inflammation/virology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/metabolism , Animals , Blood Coagulation , COVID-19/complications , COVID-19/therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/therapy , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Host-Pathogen Interactions , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/therapy , Inflammation Mediators/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Pulmonary Edema/metabolism , Pulmonary Edema/pathology , Pulmonary Edema/virology , Signal Transduction
8.
Front Immunol ; 11: 574862, 2020.
Article in English | MEDLINE | ID: covidwho-845301

ABSTRACT

It is currently believed that innate immunity is unable to prevent the spread of SARS-CoV-2 from the upper airways to the alveoli of high-risk groups of patients. SARS-CoV-2 replication in ACE-2-expressing pneumocytes can drive the diffuse alveolar injury through the cytokine storm and immunothrombosis by upregulating the transcription of chemokine/cytokines, unlike several other respiratory viruses. Here we report histopathology data obtained in post-mortem lung biopsies of COVID-19, showing the increased density of perivascular and septal mast cells (MCs) and IL-4-expressing cells (n = 6), in contrast to the numbers found in pandemic H1N1-induced pneumonia (n = 10) or Control specimens (n = 10). Noteworthy, COVID-19 lung biopsies showed a higher density of CD117+ cells, suggesting that c-kit positive MCs progenitors were recruited earlier to the alveolar septa. These findings suggest that MC proliferation/differentiation in the alveolar septa might be harnessed by the shift toward IL-4 expression in the inflamed alveolar septa. Future studies may clarify whether the fibrin-dependent generation of the hyaline membrane, processes that require the diffusion of procoagulative plasma factors into the alveolar lumen and the endothelial dysfunction, are preceded by MC-driven formation of interstitial edema in the alveolar septa.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Mast Cells/immunology , Pneumonia, Viral/immunology , Pulmonary Alveoli/immunology , Pulmonary Edema/immunology , Thrombosis/immunology , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/pathology , Influenza, Human/virology , Interleukin-4/immunology , Male , Mast Cells/pathology , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Proto-Oncogene Proteins c-kit/immunology , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , Pulmonary Edema/pathology , Pulmonary Edema/virology , SARS-CoV-2 , Thrombosis/pathology , Thrombosis/virology
9.
Trends Immunol ; 41(10): 856-859, 2020 10.
Article in English | MEDLINE | ID: covidwho-703987

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mainly affects the lungs. Sarcoidosis is an autoinflammatory disease characterized by the diffusion of granulomas in the lungs and other organs. Here, we discuss how the two diseases might involve some common mechanistic cellular pathways around the regulation of autophagy.


Subject(s)
Autophagy/drug effects , Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Pulmonary Edema/drug therapy , Sarcoidosis/drug therapy , Severe Acute Respiratory Syndrome/drug therapy , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Autophagy/genetics , Azithromycin/therapeutic use , Betacoronavirus/growth & development , COVID-19 , Chloroquine/therapeutic use , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/virology , Host-Pathogen Interactions/drug effects , Humans , Isoniazid/therapeutic use , Lung/drug effects , Lung/pathology , Lung/virology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , Pulmonary Edema/epidemiology , Pulmonary Edema/genetics , Pulmonary Edema/virology , Rifampin/therapeutic use , SARS-CoV-2 , Sarcoidosis/epidemiology , Sarcoidosis/genetics , Sarcoidosis/virology , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index
10.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1239-L1243, 2020 06 01.
Article in English | MEDLINE | ID: covidwho-246452

ABSTRACT

Lethality of coronavirus disease (COVID-19) during the 2020 pandemic, currently still in the exponentially accelerating phase in most countries, is critically driven by disruption of the alveolo-capillary barrier of the lung, leading to lung edema as a direct consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We argue for inhibition of the transient receptor potential vanilloid 4 (TRPV4) calcium-permeable ion channel as a strategy to address this issue, based on the rationale that TRPV4 inhibition is protective in various preclinical models of lung edema and that TRPV4 hyperactivation potently damages the alveolo-capillary barrier, with lethal outcome. We believe that TRPV4 inhibition has a powerful prospect at protecting this vital barrier in COVID-19 patients, even to rescue a damaged barrier. A clinical trial using a selective TRPV4 inhibitor demonstrated a benign safety profile in healthy volunteers and in patients suffering from cardiogenic lung edema. We argue for expeditious clinical testing of this inhibitor in COVID-19 patients with respiratory malfunction and at risk for lung edema. Perplexingly, among the currently pursued therapeutic strategies against COVID-19, none is designed to directly protect the alveolo-capillary barrier. Successful protection of the alveolo-capillary barrier will not only reduce COVID-19 lethality but will also preempt a distressing healthcare scenario with insufficient capacity to provide ventilator-assisted respiration.


Subject(s)
Betacoronavirus , Coronavirus Infections , Lung/virology , Pandemics , Pneumonia, Viral , Pulmonary Edema/prevention & control , TRPV Cation Channels/antagonists & inhibitors , COVID-19 , Calcium/metabolism , Coronavirus Infections/virology , Humans , Lung/metabolism , Pneumonia, Viral/virology , Pulmonary Edema/virology , Respiration, Artificial , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL